Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17072, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273547

RESUMEN

Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.


Asunto(s)
Secuestro de Carbono , Ecosistema , Cambio Climático , Bosques , Carbono , Suelo
2.
Sci Total Environ ; 914: 170156, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219692

RESUMEN

Forest stand transformation is a crucial strategy for enhancing the productivity and stability of planted forest ecosystems and maximizing their ecosystem functions. However, understanding forest ecosystem multifunctionality responses to various stand transformation methods remains limited. In this study, we assessed ecosystem multifunctionality, encompassing nutrient cycling, carbon stocks, water regulation, decomposition, wood production, and symbiosis, under different stand transformation methods (Chinese fir monoculture, mixed conifer and broad-leaf, broad-leaf mixed, and secondary forests). We also identified key factors contributing to variations in ecosystem multifunctionality. The results showed that Chinese fir plantations were more conducive to carbon stock creation, while broad-leaved mixed plantations excelled in water regulation. Secondary forests exhibited higher ecosystem multifunctionality than other plantation types, with Chinese fir plantations displaying the highest multifunctionality, significantly surpassing mixed coniferous and broad-leaved plantations. Our findings further revealed that soil nutrients and plant diversity have significant impacts on ecosystem multifunctionality. In summary, stand transformation profoundly influences ecosystem multifunctionality, and mixed plantations do not necessarily provide higher ecosystem multifunctionality than monoculture plantations.


Asunto(s)
Cunninghamia , Ecosistema , Bosques , Suelo , Árboles , Carbono/análisis , Agua , China
3.
Life (Basel) ; 13(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38137891

RESUMEN

Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.

4.
Sci Total Environ ; 904: 166962, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696397

RESUMEN

In southern China, Chinese fir Cunninghamia lanceolata is one of the most important native conifer trees, widely used in afforestation programs. This area has the largest forestland atmospheric carbon sink, and a relatively young stand age characterizes these forests. However, how C. lanceolata forests evolved regarding their ability to sequester carbon remains unclear. Here we present data on carbon storage and sequestration capacity of C. lanceolata at six stand ages (5-, 10-, 15-, 20-, 30- and 60 - year-old stands). Results show that the carbon stock in trees, understory, vegetation, litter, soil, and ecosystem significantly increased with forest age. The total ecosystem carbon stock increased from 129.11 to 348.43 Mg ha-1 in the 5- and 60 - year-old stands. The carbon sequestration rate of C. lanceolata shows an overall increase in the first two stand intervals (5-10 and 10-15), peaks in the 15-20 stand intervals, and then decreases in the 20-30 and 30-60 stand intervals. Our result revealed that carbon sequestration rate is a matter of tree age, with the highest sequestration rates occurring in the middle age forest (15-20 - year-old). Therefore, this information may be useful for national climate change mitigation actions and afforestation programs, since forests are primarily planted for this purpose.


Asunto(s)
Cunninghamia , Ecosistema , Secuestro de Carbono , Bosques , Árboles , Suelo , Carbono/análisis , China , Biomasa
5.
Sci Total Environ ; 897: 165346, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419346

RESUMEN

Warming affects microbial functioning of soil and the phyllosphere across global ecosystems. However, little is known about the impact of increasing temperature on antibiotic resistome profiles in natural forests. To address this issue, we investigated antibiotic resistance genes (ARGs) in both soil and the plant phyllosphere using an experimental platform established in a forest ecosystem that delivers a temperature difference of 2.1 °C along an altitudinal gradient. Principal Coordinate Analysis (PCoA) showed that there were significant differences in the composition of soil and plant phyllosphere ARGs at different altitudes (P = 0.001). The relative abundance of phyllosphere ARGs and mobile genetic elements (MGEs) and soil MGEs increased with temperature. More resistance gene classes increased in abundance in the phyllosphere (10 classes) than soil (2 classes), and a Random Forest model analysis suggested that phyllosphere ARGs were more sensitive to temperature change than soil. Increasing temperature as a direct consequence of an altitudinal gradient, and the relative abundance of MGEs were the main drivers that shaped the profiles of ARGs in the phyllosphere and soil. Biotic and abiotic factors affected phyllosphere ARGs indirectly via MGEs. This study enhances our understanding of the influence of altitude gradients on resistance genes in natural environments.


Asunto(s)
Genes Bacterianos , Suelo , Ecosistema , Antibacterianos , Plantas , Microbiología del Suelo
6.
Environ Sci Technol ; 57(30): 11075-11083, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37471467

RESUMEN

Acid deposition in China has been declining since the 2000s. While this may help mitigate acidification in forest soils and water, little is known about the recovery of soils and water from previous severe acidification in tropical China. Here, we assessed the chemistry of mineral soils, water, and acid gases (SO2 and NOx) from three successional forest types in tropical China from 2000 to 2022. Our results showed that soil pH increased synchronously from 3.9 (2000-2015) to 4.2 (2016-2022) across all three forest types, with exchangeable acid initially decreasing and thereafter stabilizing. Surface and ground water pH also gradually increased throughout the monitoring period. Soil pH recovery was stronger in the primary than in the planted forest. However, soil pH recovery lagged behind the increase in rainfall pH by approximately a decade. The recovery of soil pH was likely related to the positive effects of the dissolution of Al/Fe-hydroxysulfate mineral and subsequent sulfur desorption on soil acid-neutralizing capacity, increased soil organic matter, and climate warming, but was likely moderated by increased exchangeable aluminum and potentially proton-producing hydroxysulfate mineral dissolution that caused the lagged soil pH recovery. Surface and ground water pH recovery was attributed to increased water acid-neutralizing capacity. Our study reports the potential for the recovery of acidified soil and water following decreased acid deposition and provides new insights into the functional recovery of acid-sensitive forests.

7.
Sci Total Environ ; 894: 164974, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37336406

RESUMEN

The establishment of forest plantations is an excellent silvicultural alternative to improve atmospheric carbon (C) sequestration for climate change mitigation. In recent years, the importance of forest growth and C dynamics at different stand ages have drawn huge attention for investigation. To evaluate the impacts of different stand ages on the C storage capacity of Castanopsis hystrix plantations ecosystems, we measured biomass and C content in trees, understory, litter, and soil components from field measurements at different stand ages, i.e., 6-, 10-, 15-, 25-, and 34-year-old stands. Results showed that the C stocks in trees, understory vegetation, litter, soil and the whole ecosystem increased steadily with stand age. C. hystrix C storage capacity in the 6-, 10-, 15-, 25-, and 34-year-old stands were 29.17, 56.18, 85.60, 132.19 and 157.79 Mg ha-1, respectively, while the total ecosystem C storage capacity was 68.11, 106.11, 136.13, 187.34 and 226.14 Mg ha-1, respectively. Meanwhile, the C sequestration rate in the 6-10, 10-15, 15-25 and 25-35-year-old stands were 675.28, 588.35, 465.97 and 284.39 g m2 year-1, respectively. Similarly, total biomass of trees, understory, and litter increased with stand age. Our study indicated that C. hystrix plantations are still developing in the area, since live biomass and soil C continue to accumulate despite reduced C sequestration rates. The information provided here highlight the C stock and C sequestration rates of C. hystrix at different stand ages, providing baseline information on the C dynamics of young and older stand of C. hystrix in this region; Hence, such knowledge could be useful for designing more realistic policies to mitigate climate change, such as programs to maintain continuous forest growth.


Asunto(s)
Carbono , Ecosistema , Carbono/análisis , Bosques , Biomasa , Árboles , Suelo , Secuestro de Carbono , China
8.
Plant Sci ; 330: 111641, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36806610

RESUMEN

Chlorophylls are the major pigments that harvest light energy during photosynthesis in plants. Although reactions in chlorophyll biogenesis have been largely known, little attention has been paid to the post-translational regulation mechanism of this process. In this study, we found that four lysine sites (K128/340/350/390) of NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the only light-triggered step in chlorophyll biosynthesis, were acetylated after dark-grown seedlings transferred to light via acetylomics analysis. Etiolated seedlings with K390 mutation of PORA had a lower greening rate and decreased PORA acetylation after illumination. Importantly, K390 of PORA was found extremely conserved in plants and cyanobacteria via bioinformatics analysis. We further demonstrated that the acetylation level of PORA was increased by exposing the dark-grown seedlings to the histone deacetylase (HDAC) inhibitor TSA. Thus, the HDACs probably regulate the acetylation of PORA, thereby controlling this non-histone substrate to catalyze the reduction of Pchlide to produce chlorophyllide, which provides a novel regulatory mechanism by which the plant actively tunes chlorophyll biosynthesis during the conversion from skotomorphogenesis to photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Arabidopsis/genética , Arabidopsis/metabolismo , Oxidorreductasas/genética , NADP , Proteínas de Arabidopsis/metabolismo , Acetilación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Luz , Clorofila , Protoclorofilida
9.
Glob Chang Biol ; 29(6): 1501-1513, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448266

RESUMEN

Climate change globally affects soil microbial community assembly across ecosystems. However, little is known about the impact of warming on the structure of soil microbial communities or underlying mechanisms that shape microbial community composition in subtropical forest ecosystems. To address this gap, we utilized natural variation in temperature via an altitudinal gradient to simulate ecosystem warming. After 6 years, microbial co-occurrence network complexity increased with warming, and changes in their taxonomic composition were asynchronous, likely due to contrasting community assembly processes. We found that while stochastic processes were drivers of bacterial community composition, warming led to a shift from stochastic to deterministic drivers in dry season. Structural equation modelling highlighted that soil temperature and water content positively influenced soil microbial communities during dry season and negatively during wet season. These results facilitate our understanding of the response of soil microbial communities to climate warming and may improve predictions of ecosystem function of soil microbes in subtropical forests.


Asunto(s)
Microbiota , Micobioma , Ecosistema , Suelo/química , Microbiología del Suelo , Bosques , Bacterias
10.
Sci Total Environ ; 845: 157277, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35835196

RESUMEN

Tree species richness has been recognized as an underlying driving factor for regulating soil phosphorus (P) status in many site-specific studies. However, it remains poorly understood whether this is true at broad scales where soil P strongly rely on climate, soil type and vegetation type. Here, based on the data of 946 mature natural forest sites from a nationwide field survey in China, we analyzed the impact of tree species richness on soil P density of China's mature natural forests (deciduous coniferous forest, DCF; evergreen coniferous forest, ECF; deciduous broad-leaved forest, DBF; evergreen broad-leaved forest, EBF; and mixed coniferous and broad-leaved forest, MF). Our results showed that tree species richness had a negative effect on soil P density in China's mature natural forests. The Random Forest regression model showed that the relative importance of tree species richness to soil P density was second only to the climate factors (mean annual temperature, MAT; mean annual precipitation, MAP). In addition, the structural equation model (SEM) results showed that the goodness fit of SEM increased when the tree species richness was included into the model. These results suggested that tree species richness was an important factor in regulating the China's mature natural forests soil P density. Furthermore, the SEM results showed that the decreased soil P density was related to the increase in ANPP and the decrease in litter P concentration induced by tree species richness. This result indicates that tree species richness could facilitate plant P absorption and inhibit plant P return into the soil, and thus reducing the soil P density in China's mature natural forests. In conclusion, we found tree species richness was an important biotic factor in regulating soil P density at broad scales, which should be fully considered in Earth models that represent P cycle.


Asunto(s)
Fósforo , Suelo , China , Clima , Fósforo/análisis , Plantas , Suelo/química , Temperatura
11.
Bioresour Technol ; 357: 127312, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35577221

RESUMEN

The addition of external carbon sources is crucial for effective biological treatment of nutrient-rich but carbon-depleted hydroponic wastewater using constructed wetlands. In this study, we examined the effects of applying three types of carbon substrates, namely sucrose, hydroponic kale residues, and common reed litter, on the nutrient removal efficiency and greenhouse gas emission rate of vertical flow constructed wetlands. The addition of sucrose and common reed litter was shown to perform equally well in enhancing the removal of total nitrogen (84.9-93.5%), nitrate (98.3-99.8%) and phosphate (53.8-55.2%) as compared to the control. Moreover, the application of common reed litter led to significantly lower mean CH4 and N2O emissions than that of kale residues. These findings suggested that Phragmites reed litter, which is easily found in wetlands worldwide, could be an effective, low-cost and climate-friendly carbon substrate to be applied in constructed wetlands for hydroponic wastewater treatment.


Asunto(s)
Gases de Efecto Invernadero , Humedales , Carbono , Gases de Efecto Invernadero/análisis , Hidroponía , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Nutrientes , Sacarosa , Aguas Residuales/análisis
12.
Glob Chang Biol ; 28(13): 4085-4096, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35412664

RESUMEN

Phosphorus (P) is often one of the most limiting nutrients in highly weathered soils of humid tropical forests and may regulate the responses of carbon (C) feedback to climate warming. However, the response of P to warming at the ecosystem level in tropical forests is not well understood because previous studies have not comprehensively assessed changes in multiple P processes associated with warming. Here, we detected changes in the ecosystem P cycle in response to a 7-year continuous warming experiment by translocating model plant-soil ecosystems across a 600-m elevation gradient, equivalent to a temperature change of 2.1°C. We found that warming increased plant P content (55.4%) and decreased foliar N:P. Increased plant P content was supplied by multiple processes, including enhanced plant P resorption (9.7%), soil P mineralization (15.5% decrease in moderately available organic P), and dissolution (6.8% decrease in iron-bound inorganic P), without changing litter P mineralization and leachate P. These findings suggest that warming sustained plant P demand by increasing the biological and geochemical controls of the plant-soil P-cycle, which has important implications for C fixation in P-deficient and highly productive tropical forests in future warmer climates.


Asunto(s)
Ecosistema , Fósforo , Ciclo del Carbono , Bosques , Suelo/química , Clima Tropical
13.
Glob Chang Biol ; 27(3): 664-674, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33140554

RESUMEN

Warming may have profound effects on nitrogen (N) cycling by changing plant N demand and underground N supply. However, large uncertainty exists regarding how warming affects the integrated N dynamic in tropical forests. We translocated model plant-soil ecosystems from a high-altitude site (600 m) to low-altitude sites at 300 and 30 m to simulate warming by 1.0°C and 2.1°C, respectively, in tropical China. The effects of experimental warming on N components in plant, soil, leaching, and gas were studied over 6 years. Our results showed that foliar δ15 N values and inorganic N (NH4 -N and NO3 -N) leaching were decreased under warming, with greater decreases under 2.1°C of warming than under 1.0°C of warming. The 2.1°C of warming enhanced plant growth, plant N uptake, N resorption, and fine root biomass, suggesting higher plant N demand. Soil total N concentrations, NO3 -N concentrations, microbial biomass N and arbuscular mycorrhizal fungal abundance were decreased under 2.1°C of warming, which probably restricted bioavailable N supply and arbuscular mycorrhizal contribution of N supply to plants. These changes in plants, soils and leaching indicated more closed N cycling under warming, the magnitude of which varied over time. The closed N cycling became pronounced during the first 3 years of warming where the sustained reductions in soil inorganic N could not meet plant N demand. Subsequently, the closed N cycling gradually mitigated, as observed by attenuated positive responses of plant growth and less negative responses of microbial biomass N to warming during the last 3 years. Overall, the more closed N cycling under warming could facilitate ecosystem N retention and affect production in these tropical forests, but these effects would be eventually mitigated with long-term warming probably due to the restricted plant growth and microbial acclimation.


Asunto(s)
Ecosistema , Nitrógeno , China , Bosques , Ciclo del Nitrógeno , Suelo
14.
Sci Rep ; 8(1): 10536, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002495

RESUMEN

Forests act as major sinks for atmospheric CO2. An understanding of the relationship between forest biomass allocation and precipitation gradients is needed to estimate the impacts of changes in precipitation on carbon stores. Biomass patterns depend on tree size or age, making it unclear whether biomass allocation is limited by tree age at regional scales. Using a dataset of ten typical forest types spanning a large age scale, we evaluated forest biomass allocation-precipitation correlations with the aim of testing whether biomass allocation patterns vary systematically in response to altered precipitation. With increasing mean annual precipitation, a significant quadratic increase occurred in ≤30 yr and >60 yr groups in stem biomass, >60 yr group in branch biomass, and >60 yr groups in leaf biomass; and a significant cubic increase occurred in 30-60 yr and all age forest groups in stem biomass, ≤30 yr, 30-60 yr and all age forest groups in branch biomass, ≤30 yr and all age forest groups in leaf biomass, and in each group in root biomass, indicating that organ biomass is strongly limited by precipitation. Thus, forest biomass responds predictably to changes in mean annual precipitation. The results suggest that forest organ biomass-precipitation relationships hold across independent datasets that encompass a broad climatic range and forest age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...